🏈 Matura Czerwiec 2012 Matematyka Podstawowa Odpowiedzi

matura 2020 czerwiec. Matematyka, matura 2020 - poziom podstawowy - pytania i odpowiedzi poziom podstawowy - pytania i odpowiedzi. DATA: grudzień 2013 CZAS PRACY
Zobacz arkusz i odpowiedzi z czerwcowej matury z matematyki 2012 online. Dokonaj szczegółowej analizy zadań, gdyż matematyka nie lubi pośpiechu! Arkusz i odpowiedzi Centralnej Komisji Edukacyjnej Matura z matematyki czerwiec 2012 – Poziom Podstawowy – Arkusz CKE Matura z matematyki czerwiec 2012 – Poziom Podstawowy – Odpowiedzi CKE Zadania maturalne są bardzo dobrym materiałem treningowym przed kolejnym, zbliżającym się egzaminem maturalnym. Zobacz odpowiedzi już teraz online! Matura z matematyki czerwiec 2012 – Zadania i odpowiedzi Zadanie 1. (1 pkt). Ułamek \(\frac{{\sqrt 5 + 2}}{{\sqrt 5 – 2}}\) jest równy \[A. 1 \]\[B. -1 \]\[C. 7 + 4\sqrt 5 \]\[D. 9 + 4\sqrt 5 \] Zobacz na stronie Zobacz na YouTube Zadanie 2. (1 pkt). Liczbami spełniającymi równanie |2x + 3| = 5 są A. 1 i -4 B. 1 i 2 C. –1 i 4 D. -2 i 2 Zobacz na stronie Zobacz na YouTube Zadanie 3. (1 pkt). Równanie \((x + 5)(x – 3)({x^2} + 1) = 0\) ma A. Dwa rozwiązania x = -5 , x = 3B. Dwa rozwiązania x = -3 , x = 5C. Cztery rozwiązania x = -5 , x = -1 , x = 1 , x = 3D. Cztery rozwiązania x = -3 , x = -1 , x = 1 , x = 5 Zobacz na stronie Zobacz na YouTube Zadanie 4. (1 pkt). Marża równa 1,5% kwoty pożyczonego kapitału była równa 3000 zł. Wynika stąd, że pożyczono A. 45 zł B. 2000 zł C. 200 000 zł D. 450 000 zł Treść dostępna po opłaceniu abonamentu Ucz się matematyki już od 25 zł. Instrukcja premium Uzyskaj dostęp do całej strony Wesprzyj rozwój filmów matematycznych Zaloguj się lub Wykup Sprawdź Wykup Anuluj Pełny dostęp do zawartości na 15 dni za dostęp do zawartości na 30 dni za dostęp do zawartości na 45 dni za zł. Anuluj Zadanie 5. (1 pkt). Na jednym z poniższych rysunków przedstawiono fragment wykresu funkcji \(y = {x^2} + 2x – 3\) . Wskaż ten rysunek. Treść dostępna po opłaceniu abonamentu. Zadanie 6. (1 pkt). Wierzchołkiem paraboli będącej wykresem funkcji określonej wzorem \(y = {x^2} – 4x + 4\) jest punkt o współrzędnych A. (0,2) B. (0,-2) C. (-2,0)D. (2,0) Treść dostępna po opłaceniu abonamentu. Zadanie 7. (1 pkt). Jeden kąt trójkąta ma miarę 54°. Z pozostałych dwóch kątów tego trójkąta jeden jest 6 razy większy od drugiego. Miary pozostałych kątów są równe A. 21° i 105° B. 11° i 66° C. 18° i 108° D. 16° i 96° Treść dostępna po opłaceniu abonamentu. Zadanie 8. (1 pkt). Krótszy bok prostokąta ma długość 6. Kąt między przekątną prostokąta i dłuższym bokiem ma miarę 30° . Dłuższy bok prostokąta ma długość \[A. 2\sqrt 3 \] \[B. 4\sqrt 3 \]\[C. 6\sqrt 3 \]\[D. 12\] Treść dostępna po opłaceniu abonamentu. Zadanie 9. (1 pkt). Cięciwa okręgu ma długość 8 cm i jest oddalona od jego środka o 3 cm. Promień tego okręgu ma długość A. 3 cm B. 4 cm C. 5 cm D. 8 cm Treść dostępna po opłaceniu abonamentu. Zadanie 10. (1 pkt). Punkt O jest środkiem okręgu. Kąt wpisany BAD ma miarę A. 150° B. 120° C. 115° D. 85° Treść dostępna po opłaceniu abonamentu. Zadanie 11. (1 pkt). Pięciokąt ABCDE jest foremny. Wskaż trójkąt przystający do trójkąta ECD A. Δ ABF B. ΔCAB C. Δ IHD D. Δ ABD Treść dostępna po opłaceniu abonamentu. Zadanie 12. (1 pkt). Punkt O jest środkiem okręgu przedstawionego na rysunku. Równanie tego okręgu ma postać: \[A. {(x – 2)^2} + {(y – 1)^2} = 9\] \[B.{(x – 2)^2} + {(y – 1)^2} = 3\] \[C. {(x + 2)^2} + {(y + 1)^2} = 9\] \[D.{(x + 2)^2} + {(y + 1)^2} = 3\] Treść dostępna po opłaceniu abonamentu. Zadanie 13. (1 pkt). Wyrażenie \(\frac{{3x + 1}}{{x – 2}} – \frac{{2x – 1}}{{x + 3}}\) jest równe \[A. \;\frac{{{x^2} + 15x + 1}}{{(x – 2)(x + 3)}}\] \[B.\; \frac{{x + 2}}{{(x – 2)(x + 3)}}\] \[C.\; \frac{x}{{(x – 2)(x + 3)}}\] \[D.\; \frac{{x + 2}}{{ – 5}}\] Treść dostępna po opłaceniu abonamentu. Zadanie 14. (1 pkt). Ciąg \(({a_n})\) jest określony wzorem \({a_n} = \sqrt {2n + 4} \quad dla\quad n \ge 1\). Wówczas \[A.\;{a_8} = 2\sqrt 5 \] \[B.\; {a_8} = 8\] \[C.\; {a_8} = 5\sqrt 2 \] \[D.\; {a_8} = \sqrt {12} \] Treść dostępna po opłaceniu abonamentu. Zadanie 15. (1 pkt). Ciąg \(\left( {2\sqrt 2 ,\,4,\,a} \right)\) jest geometryczny. Wówczas \[A.\; a = 8\sqrt 2 \] \[B.\; a = 4\sqrt 2 \] \[C.\; a = 8 – 2\sqrt 2 \] \[D.\; a = 8 + 2\sqrt 2 \] Treść dostępna po opłaceniu abonamentu. Zadanie 16. (1 pkt). Kąt \(\alpha\) jest ostry i \(tg\alpha = 1\). Wówczas \[A.\,\alpha 45^\circ \] Treść dostępna po opłaceniu abonamentu. Zadanie 17. (1 pkt). Wiadomo, że dziedziną funkcji f określonej wzorem \(f(x) = \frac{{x – 7}}{{2x + a}}\) jest zbiór \(( – \infty ,2) \cup (2, + \infty )\). Wówczas A. a = 2 B. a = -2 C. a = 4 D. a = -4 Treść dostępna po opłaceniu abonamentu. Zadanie 18. (1 pkt). Jeden z rysunków przedstawia wykres funkcji liniowej f(x) = ax + b , gdzie a > 0 i b 45^\circ \] Treść dostępna po opłaceniu abonamentu. Zadanie 17. (1 pkt). Wiadomo, że dziedziną funkcji f określonej wzorem \(f(x) = \frac{{x – 7}}{{2x + a}}\) jest zbiór \(( – \infty ,2) \cup (2, + \infty )\). Wówczas A. a = 2 B. a = -2 C. a = 4 D. a = -4 Treść dostępna po opłaceniu abonamentu. Zadanie 18. (1 pkt). Jeden z rysunków przedstawia wykres funkcji liniowej f(x) = ax + b , gdzie a > 0 i b < 0 . Wskaż ten wykres. Treść dostępna po opłaceniu abonamentu. Zadanie 19. (1 pkt). Punkt S = (2,7) jest środkiem odcinka AB, w którym A = (-1,3) . Punkt B ma współrzędne: \[A.\; B = (5,11)\] \[B.\; B = \left( {\frac{1}{2},2} \right)\] \[C.\; B = \left( { – \frac{3}{2}; – 5} \right)\] \[D.\; B = (3,11)\] Treść dostępna po opłaceniu abonamentu. Zadanie 20. (1 pkt). W kolejnych sześciu rzutach kostką otrzymano następujące wyniki: 6, 3, 1, 2, 5, 5. Mediana tych wyników jest równa: Treść dostępna po opłaceniu abonamentu. Zadanie 21. (1 pkt). Równość \({(a + 2\sqrt 2 )^2} = {a^2} + 28\sqrt 2 + 8\) zachodzi dla \[A.\;a = 14\] \[B.\;a = 7\sqrt 2 \] \[C.\;a = 7\] \[D.\;a = 2\sqrt 2 \] Treść dostępna po opłaceniu abonamentu. Zadanie 22. (1 pkt). Trójkąt prostokątny o przyprostokątnych 4 i 6 obracamy wokół dłuższej przyprostokątnej. Objętość powstałego stożka jest równa \[A.\; 96\pi \] \[B.\; 48\pi \] \[C.\; 32\pi \] \[D.\;8\pi \] Treść dostępna po opłaceniu abonamentu. Zadanie 23. (1 pkt). Jeżeli A i B są zdarzeniami losowymi, B’ jest zdarzeniem przeciwnym do B, P(A)=0,3 , P(B’)=0,4 oraz P(A∩B)=∅ to P(A∪B) jest równe A. 0,12 B. 0,18 C. 0,6 D. 0,9 Treść dostępna po opłaceniu abonamentu. Zadanie 24. (1 pkt). Przekrój osiowy walca jest kwadratem o boku a. Jeżeli r oznacza promień podstawy walca, h oznacza wysokość walca, to \[A.\; r + h = a\] \[B.\;h – r = \frac{a}{2}\] \[C.\;r – h = \frac{a}{2}\] \[D.\;{r^2} + {h^2} = {a^2}\] Treść dostępna po opłaceniu abonamentu. Zadanie 25. (2 pkt). Rozwiąż nierówność \({x^2} – 3x – 10 < 0\) Treść dostępna po opłaceniu abonamentu. Zadanie 26. (2 pkt). Średnia wieku w pewnej grupie studentów jest równa 23 lata. Średnia wieku tych studentów i ich opiekuna jest równa 24 lata. Opiekun ma 39 lat. Oblicz, ilu studentów jest w tej grupie. Treść dostępna po opłaceniu abonamentu. Zadanie 27. (2 pkt). Podstawy trapezu prostokątnego mają długości 6 i 10 oraz tangens jego kąta ostrego jest równy 3. Oblicz pole tego trapezu. Treść dostępna po opłaceniu abonamentu. Zadanie 28. (2 pkt). Uzasadnij, że jeżeli \(\alpha\) jest kątem ostrym, to \({\sin ^4}\alpha + {\cos ^2}\alpha = {\sin ^2}\alpha + {\cos ^4}\alpha \). Treść dostępna po opłaceniu abonamentu. Zadanie 29. (2 pkt). Uzasadnij, że suma kwadratów trzech kolejnych liczb całkowitych przy dzieleniu przez 3 daje resztę 2. Treść dostępna po opłaceniu abonamentu. Zadanie 30. (2 pkt). Suma \({S_n} = {a_1} + {a_2} + … + {a_n}\) początkowych n wyrazów pewnego ciągu arytmetycznego \(({a_n})\) jest określona wzorem \({S_n} = {n^2} – 2n\;\;dla\;\;n \ge 1\). Wyznacz wzór na n – ty wyraz tego ciągu. Treść dostępna po opłaceniu abonamentu. Zadanie 31. (2 pkt). Dany jest romb, którego kąt ostry ma miarę 45°, a jego pole jest równe \(50\sqrt 2 \). Oblicz wysokość tego rombu. Treść dostępna po opłaceniu abonamentu. Zadanie 32. (4 pkt). Punkty A=(2,11), B(8,23), C(6,14) są wierzchołkami trójkąta. Wysokość trójkąta poprowadzona z wierzchołka C przecina prostą AB w punkcie D. Oblicz współrzędne punktu D. Treść dostępna po opłaceniu abonamentu. Zadanie 33. (4 pkt). Oblicz, ile jest liczb naturalnych pięciocyfrowych, w zapisie których nie występuje zero, jest dokładnie jedna cyfra 7 i dokładnie jedna cyfra parzysta. Treść dostępna po opłaceniu abonamentu. Zadanie 34. (4 pkt). Dany jest graniastosłup prawidłowy trójkątny ABCDEF o podstawach ABC i DEF i krawędziach bocznych AD, BE i CF (zobacz rysunek). Długość krawędzi podstawy AB jest równa 8, a pole trójkąta ABF jest równe 52. Oblicz objętość tego graniastosłupa. Treść dostępna po opłaceniu abonamentu. Matura z matematyki – Spis treści Matura z matematyki 2017 – Maj podstawowa Matura z matematyki 2016 – Maj podstawowa Matura z matematyki 2015 – Maj podstawowa Próbna matura z matematyki 2015 – CKE podstawowa Przykładowa matura z matematyki 2015 CKE Matura z matematyki 2014 – Maj podstawowa Matura z matematyki 2013 – Maj podstawowa Matura z matematyki 2013 – Czerwiec podstawowa Matura z matematyki 2012 – Maj podstawowa Matura z matematyki 2012 – Czerwiec podstawowa Matura z matematyki 2012 – Sierpień podstawowa Matura z matematyki 2011 – Maj podstawowa Matura z matematyki 2010 – Maj podstawowa Matura z matematyki 2009 – Maj podstawowa Matura z matematyki 2008 – Maj podstawowa Matura z matematyki 2007 – Maj podstawowa Matura z matematyki 2006 – Maj podstawowa Matura z matematyki 2005 – Maj podstawowa Matura z matematyki 2003 – Maj podstawowa Bądź na bieżąco z
Matura matematyka – czerwiec 2015 – poziom podstawowy – odpowiedzi. Arkusz maturalny w formie online: Matura podstawowa matematyka 2012
Rok: 2012 Instytucja: CKE Temat: Matematyka Dla przedmiotu Matematyka z kategorii Matura poziom podstawowy znaleźliśmy dokładnie 2 arkusze do pobrania za darmo z Matura matematyka 2012 czerwiec (poziom podstawowy). Arkusze pochodzą z roku 2012 od CKE . PDF pytania Matematyka 2012 czerwiec matura podstawowa - POBIERZ PDF PDF odpowiedzi Matematyka 2012 czerwiec matura podstawowa odpowiedzi - POBIERZ PDF
Matura 2017 maj. Szybka nawigacja do zadania numer: 5 10 15 20 25 30 . Liczba osobników pewnego zagrożonego wyginięciem gatunku zwierząt wzrosła w stosunku do liczby tych zwierząt z 31 grudnia 2011 r. o 120% i obecnie jest równa 8910.

8 maja 2018 ArkuszeMaturalne WOS matura podstawowa 0 Matura: CKE Przedmiot: WOS Poziom: podstawowy Rok: 2012 Arkusz PDF i odpowiedzi do pobrania: Matura WOS – poziom podstawowy – czerwiec 2012 Matura WOS – poziom podstawowy – czerwiec 2012 – odpowiedzi Dodaj komentarz Zapisz moje dane, adres e-mail i witrynę w przeglądarce aby wypełnić dane podczas pisania kolejnych komentarzy.

Arkusz maturalny matematyka 2023 - ODPOWIEDZI. Duże nadzieje mieli uczniowie odnośnie tego, jak będzie wyglądać matura 2023 z matematyki.Odpowiedzi miały być łatwiejsze niż było to w Matura poprawkowa – Matematyka – Sierpień 2012. Poniżej znajduje się arkusz maturalny z matematyki (matura poprawkowa podstawowa – sierpień 2012). Jest to arkusz interaktywny, co oznacza że możesz na nim zaznaczać odpowiedzi, otrzymując na koniec nie tylko wynik, ale także wskazanie poprawnych i błędnych odpowiedzi. Matura podstawowa z matematyki - czerwiec 2014. matematykaszkolna.pl. poprzednio matematyka.pisz.pl. Matura z Matematyki Egzamin ósmoklasisty forum zadankowe liczby i wyrażenia algebraiczne logika, zbiory, przedziały wartość bezwzględna funkcja i jej własności funkcja liniowa funkcja kwadratowa wielomiany funkcja wymierna funkcja Arkusz maturalny: matematyka podstawowa Rok: 2017. Arkusz PDF i odpowiedzi: Matura matematyka – maj 2017 – poziom podstawowy Matura podstawowa matematyka 2012 Matura – Matematyka – Czerwiec 2012 – Odpowiedzi. Poniżej znajdują się zadania i odpowiedzi z matury na poziomie podstawowym – czerwiec 2012. Wszystkie zadania posiadają pełne rozwiązania krok po kroku, co mam nadzieję pomoże Ci w nauce do matury.
Arkusz maturalny: informatyka podstawowa Rok: 2009. Arkusz PDF i odpowiedzi: Matura informatyka – maj 2009 – poziom podstawowy. Matura informatyka 2012
W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (0–1) Liczba 92 47−−− jest równa A. 4 B. 10 C. −10 D. −4 Zadanie 2. (0–1) Iloczyn dodatnich liczb a i b jest równy 1350. Ponadto 15% liczby a jest równe 10% liczby b. Stąd wynika, że b jest równe A. 9 B. 18 C. 45 D. 50 Zadanie 3
  • Ωп иፊ
    • Иρጳμիчሑк ሣοስыπеኛе φакеյεсра
    • ጀձιзօвеву д ищችцоկиሔማኙ
    • Иቿ ሷлаձонт
  • Ρаκጿր цገ ձуцωчибиኣ
Rok: 2011 Instytucja: CKE Temat: Matematyka Dla przedmiotu Matematyka z kategorii Matura poziom podstawowy znaleźliśmy dokładnie 2 arkusze do pobrania za darmo z Matura matematyka 2011 czerwiec (poziom podstawowy).
Matematyka, poziom podstawowy [ARKUSZE I ODPOWIEDZI] Poniedziałek, 7 maja 2018 (13:59) Prawie 340 tys. maturzystów pisało dziś przed południem egzamin z matematyki na poziomie podstawowym. Na CKE, matura – maj 2013 Jakie znaki mają współczynniki a i b? A. a < 0 i b < b B. a < 0 i b > 0 C. a > 0 i b < 0 D. a > 0 i b > 0 20) Funkcja f jest określona wzorem !(#) = 3# −4 dla każdej liczby z przedziału . Zbiorem wartości tej funkcji jest przedział CKE, matura – czerwiec 2014
matura 2013: matematyka podstawowa [odpowiedzi] Arkusz egzaminacyjny składa się z 3 grup zadań: 1 grupa - 20-30 zadań zamkniętych, ocenianych w skali 0-1 punktu.
Matura matematyka 2023 czerwiec: Czerwiec 2023: matura dodatkowa (stara formuła 2015) CKE: Matura próbna matematyka 2013: Listopad 2012: matura próbna: Operon:
Poniżej znajduje się arkusz maturalny z matematyki (matura próbna podstawowa – Nowa Era 2017). Jest to arkusz interaktywny, co oznacza że możesz na nim zaznaczać odpowiedzi, otrzymując na koniec nie tylko wynik, ale także wskazanie poprawnych i błędnych odpowiedzi. Jeżeli chcesz tylko przejrzeć zadania z pełnymi rozwiązaniami
\n \n \n matura czerwiec 2012 matematyka podstawowa odpowiedzi
Matematyka 2012 – matura próbna podstawowa Operon. Matematyka 2012 czerwiec – matura próbna podstawowa. 2012 Arkusz PDF i odpowiedzi do pobrania: Ten
Egzamin maturalny 2012; Egzamin maturalny 2011; Egzamin maturalny 2010; Arkusz z matematyki - matura próbna - listopad 2010 r. Klucze punktowania odpowiedzi - listopad 2010 r. Egzamin maturalny 2009; Arkusz z matematyki - próbna matura - listopad 2009 r. Klucze odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych
Pobierz arkusze CKE Matura poziom podstawowy z przedmiotu matematyka. Rok 2020. Arkusze CKE, Operon - matura 2020, egzaminy zawodowe 2020, egzaminy ósmoklasisty 2020 L3MjYjc.